The acidity properties and gas yield in PMMA cracking followed the trends observed for the carbon removal efficiency.

The decoking rate was improved by an increase of O3 concentration in the investigated range (16–50 g/m3). Using a temperature higher than 100 ◦C was not beneficial due to the strong limitation of ozone diffusion which confined radical production – thus the regeneration process – to the outer surface.

Regeneration would be thus better performed for smaller particles, but the results were already very promising: the best regenerated sample (4 h, about 100 ◦C) exhibited a similar activity as the fresh catalyst in PMMA cracking.

Acknowledgements

The Office of the Higher Education Commission of Thailand and the French Embassy in Thailand are gratefully acknowledged for providing financial support to Supaporn Khangkham through the program Strategic Scholarships for Frontier Research Network.

The authors also thank J.L. Labat, J.L. Nadalin, I. Coghe, V. Loisel and A. Müller (LGC) for technical assistance on the set-up, M.L. de Solan Bethmale, C. Rey-Rouch, G. Raimbeaux (SAP, LGC), P. Jame, A. Bonhomme (SCA, Lyon), L. Pinard and J.D. Comparot (IC2MP, Poitiers) for characterization of the zeolites.

References

[1] J. Weitkamp, L. Puppe, Catalysis and Zeolite: Fundamentals and Applications, Springer-Verlag, Berlin, Heidelberg, 1999.
[2] P.H. Schipper, F.G. Dwyer, P.T. Sparrell, S. Mizrahi, J.A. Herbst, Zeolite ZSM-5 in fluid catalytic cracking: performance, benefits, and applications, fluid catalytic cracking, chapter 5, ACS Symposium Series 375 (1988) 64–86.
[3] D.P. Serrano, J. Aguado, J.M. Escola, Industrial and Engineering Chemistry Research 39 (2000) 1177–1184.
[4] A. Lopez, I. de Marco, B.M. Caballero, A. Adrados, M.F. Laresgoiti, Waste Management 31 (2011) 1852–1858.
[5] S. Khangkham, PhD thesis, Chulalongkorn University/INP Toulouse, 2012.

[6] W. Kaminsky, J. Franck, Journal of Analytical and Applied Pyrolysis 19 (1991) 311–318.
[7] W. Kaminsky, M. Predel, A. Sadiki, Polymer Degradation and Stability 85 (2004) 1045–1050.
[8] W. Kaminsky, H. Schmidt, C.M. Simon, Macromolecular Symposia 152 (2000) 191–199.
[9] G. Lopez, M. Artetxe, M. Amutio, G. Elordi, R. Aguado, M. Olazar, J. Bilbao, Chemical Engineering and Processing 49 (2010) 1089–1094.
[10] N. Rahimi, R. Karimzadeh, Applied Catalysis A 398 (2011) 1–17.
[11] P. Magnoux, M. Guisnet, Applied Catalysis 38 (1988) 341–352.
[12] K. Moljord, P. Magnoux, M. Guisnet, Applied Catalysis A 121 (1995) 245–259.
[13] G.A. Doka Nassionou, P. Magnoux, M. Guisnet, Microporous and Mesoporous Materials 22 (1998) 389–398.
[14] D.P. Ivanov, V.I. Sobolev, G.I. Panov, Applied Catalysis A 241 (2003) 113–121.
[15] F. Ferreira Madeira, K. Ben Tayeb, L. Pinard, H. Vezin, S. Maury, N. Cadran, Applied Catalysis A 443–444 (2012) 171–180.
[16] R.G. Copperthwaite, G.J. Hutchings, P. Johnston, S.W. Orchard, Journal of the Chemical Society, Faraday Transactions 1 82 (1986) 1007–1017.
[17] P. Monneyron, S. Mathe, M.H. Manero, J.N. Foussard, Chemical Engineering Research and Design 81 (2003) 1193–1198.
[18] L. Mariey, J. Lamotte, T. Chevreau, J.C. Lavalley, Reaction Kinetics and Catalysis Letters 59 (1996) 241–246.
[19] G.J. Hutchings, R.G. Copperthwaite, T. Themistocleous, G.A. Foulds, A.S. Bielovitch, Applied Catalysis 34 (1987) 153–161.
[20] F. Bauer, H.G. Karge, Molecular Sieves 5 (2007) 249–364.
[21] S. Brunauer, P.H. Emmett, E. Teller, Journal of the American Chemical Society 60 (1938) 309–319.
[22] E.P. Barrett, L.G. Joyner, P.P. Halenda, Journal of the American Chemical Society 73 (1951) 373–380.
[23] G. Horvath, K. Kawazoe, Journal of Chemical Engineering of Japan 16 (1983) 470–475.
[24] G. Elordi, M. Olazar, M. Artetxe, P. Castano, J. Bilbao, Applied Catalysis A: General 415–416 (2012) 89–95.
[25] C. Ngamcharussrivichai, P. Wu, T. Tatsumi, Journal of Catalysis 227 (2004) 448–458.
[26] G.V.A. Martins, G. Berlier, C. Bisio, S. Coluccia, H.O. Pastore, L. Marchese, Journal of Physical Chemistry C 112 (18) (2008) 7193–7200.
[27] D. Meloni, D. Martin, P. Ayrault, M. Guisnet, Catalysis Letters 71 (2001) 213–217.
[28] B. Wang, G. Manos, Journal of Catalysis 250 (2007) 121–127.
[29] J. Aguado, D.P. Serrano, J.M. Escola, Industrial and Engineering Chemistry Research 47 (2008) 7982–7992.
[30] G. Elordi, M. Olazar, G. Lopez, P. Castano, J. Bilbao, Applied Catalysis B: Environmental 102 (2011) 224–231.
[31] R. Lü, H. Tangbo, Q. Wang, S. Xiang, Journal of Natural Gas Chemistry 12 (2003) 56–62.